THE NECESSARY CONDITIONS FOR STABLE
COMBUSTION OF A POWDER IN A HALF-CLOSED CHAMBER

V. N. Vilyunov and A. P. Rudnev UDC 536.46 +662.311

The low-frequency stability of the steady-state combustion cycle is investigated in linear
approximation for a powder in a half-closed chamber, taking account of incompleteness of
combustion, heat losses at the walls, and dynamic erosion. The necessary conditions for
stable combustion are obtained. Qualitative conclusions are drawn of the incompleteness of
the chemical reactions taking place and of the destabilizing effect of thermal losses and ero-
sion on the combustion process. Only two out of three possible steady-state mechanisms are
stable. The existence of limits of combustion with respect to pressure is shown.

1. Statement of the Problem

Theovretically, the stability of the steady-state combustion of a powder in a half-closed chamber, on
the assumption of completeness of the chemical reactions, was studied in [1-4], etc. At reduced pressures,
the heat of combustion is considerably different from its limiting value. Figure 1 (curve 1), copied from
[5], shows the experimental dependence of the heat of combustion of nitrogiycerine powder HES 4016 on the
pressure. Reduction of the heat release can lead to a reduced temperature and pressure in the chamber and
can exert a considerable effect on the stability of the combustion cycle.

In accordance with [5], we shall assume that under steady-state conditions, the heat of the chemical
reactions Q is a function of the pressure P

0" = Q () (.1)
which is found, for example, by suitable interpolation of the experimental data (here and in the future the

quantities for steady-state conditions are denoted by a degree symbol). In particular, the relations similar
to that shown in Fig. 1 can be represented by functions of the type

o Q1 —[Q1—CQo(1 4 g)]exp[— L (p°—do)] 1.2
Q) = {4 gexp [— L (p° — o)} (1-2)

where
Qo=Q(p°=do), Qi=20Q(p°— o0))

L and g are constants (L. >0, g>1). The experimental data for HES 4016 powder {(curve 1 in Fig. 1) are
described with satisfactory accuracy by formula (1.2) with the following parameter values:

Q; = 1140 cal/g, Q, = 510 cal/g, d, = 14kgf/cm?,L = 0.2 cm?/kef,
: g = 24.
We shall represent the thermal losses at the walls of the chamber and the erosion effect of gases on
the combustion process in the form of a function of the mean density of the stream of gases G= pW. Here
p is the density and W is the average velocity of the gases. Thus, it is assumed that in the steady-state,
the rate of combustion u and also the surface temperature of the powder T, are known functions of the pres-
sure, initial temperature of the fuel Ty, the flow density G, and the temperature of the gases T,
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/] 0 Under nonsteady-state conditions, the pressure and temperature

/ , in the chamber are satisfied by the equations
! 27
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2 #p, kg /om?

having the meaning of the laws of conservation of mass and energy.
Fig. 1 Here t, o, py, V, 0y, and Fy are respectively the time, surface area
of combustion, powder density, free volume, internal surface area of
the chamber,and critical cross section of the nozzle; cy is the specific heat of the combustion products at
constant volume; R is the gas constant; n=cp/cy Is the adiabatic index; A, is the coefficient of discharge;
d, is the heat flow density from the combustion products to the walls of the chamber.

If we neglect radiant heat flow in comparison with convective heat flow (the contribution of the
various heat loss mechanisms in the chamber is analyzed in detail in [6]), we will have

g1 =D (PW)b‘ Ty —Ty) (1.6)

where T is the average temperature of the internal surface of the chamber walls; D, is a known function
of the thermophysical parameters of the combustion products and of the equivalent chamber diameter; b is
a constant, 0.8, for the closed volume conditions. Inthe future, for approximate estimates, we shall assume
T, =constant.

The mean density of the gas flow and the discharge of the combustion products through the nozzle are
connected by the relation

— oW = D, 2P 1.7
G=pW =D, PR _ (1.7)
where F is the cross-sectional area of the chamber free for the passage of gases; the coefficient D, depends
on the design of the charge: for end combustion D,~1 and for channel combustion charges D, ~0.5 under
conditions in which the velocity of the gases along the charge is distributed according to a linear law.

Under steady-state conditions the left-hand side of Eqs.(1.4) and (1.5) are vanishing. Given a speci-
fied law of combustion, we obtain from Eqgs. (1.4)and (1.5) the relations defining the steady-state pressure
and temperature in the chamber. In the simplest case, when the thermal losses and erosfon are not taken:
into account, the steady-state temperature and pressure are found from the equations

o __ AoFyp° T8 = Q (p9)
Spott” = (BT’ ? p

Calculations* for HES 4016 powder show (Fig. 2) that when F /0 =0.0051, there are three steady-
state cycles of combustion, defined by the following values of pressure, temperature, and heat of combustion:

p° 46 kg/cm?, 7,° =2670 °K,Q° = 1120 cal/g; p° = 32 kg/em?, 7,°=2100°K,
Q° = 880cal/g;p° = 17kg/cm?, I'y® = 1320°K, Q° = 555 cal/g;

[in Fig. 2 the points of intersection S,, S;, and S; of the curves of the specific issue of the gases G (curve 1)
and the specific discharge G, (curve 2), refer to the combustion surface]. For sufficiently high values of
F, /o, only the lower cycle exists (in Fig. 2 the point of intersection S, of the curves 1 and 3 when F /o =
0.0055, p° =13 kg/cm?, T,° =1200°K, and Q° =505 cal/g); in the case of low values of F4/0, it is the upper
(S5, the point of intersection of curves 1 and 4 when F,/0 =0.0046, p° =69 kg/cm?, T, =2720°K, and Q° =1140
cal/g).

Figure 3 shows the results of a calculation of the steady-state cycles, taking into account convective
heat losses at the walls of the chamber. The thermal losses were determined by the procedure discussed
in [6], and the gas flow density was expressed in terms of Pobedonostsev's parameter » [10]:

*Here and henceforth, all calculations are carried out for HES 4016 powder, with T;=25°C. The required
characteristics of the powder are taken from [5, 7-9].
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G° = % Polig” (1.8)

where u,° is the rate of combustion, without taking account of erosion.” Curve 1 in Fig. 3 is the specific
issue of the gases; curves 2, 3, and 4 are the specific flow rates (discharges) of the products when F /o =
0.0051, 0.0055, and 0.0046, respectively, and d; =1 c¢m, w =100, T;=600°K, and ¢, /o =1.

In the presence of heat losses, the steady-state cycles are displaced to the side of lower pressures
and temperatures in the chamber. In this case the following situation arises: If, for a certain value of
F4/0, without taking account of thermal losses, only one upper cycle is possible, then if thermal losses
are taken into account, the existence of three cycles is found to be possible with the same ratio of ¥,/ 0;
if, without thermal losses, the calculations show the presence of three cycles, then when thermal losses
are taken into account and with the same value of F, /o, only the lower cycle is possible, ete.

From the disposition of the issue and discharge curves of the combustion products on the Bohr dia-
gram (Figs. 2 and 3), it can be seen that of the three cycles only two are stable — the lower and the upper
cycle. The lower combustion cycle usually is not achieved in practice. Obviously, it can be achieved only
by means of a special start-up of the half-closed chamber (low initial pressures, high initial powder tem-
perature, andlarge geometric chamber dimensions). It is possible also that the lower cycle is unstable in
relation to the high-frequency region of the spectrum of the combustion product oscillations in the chamber.
This problem is not studied in this present paper.

In the future, we shall assume that the nonuniqueness ofthe steady-state cycle occurs also for the general
nonsteady-state case of system (1.4) and (1.5).

We shall mark the quantities which refer to the limiting steady-state cycle, and whichareachieved at
low pressure and temperature in the chamber, by an asterisk (p £ Tg s Uk, eto).

We introduce the dimensionless pressure and temperature in the chamber, flow density of the gases,
and the rate of combustion:

P Ty G _u
T]_‘p*oa c"‘Tz*o5 }“”"G*ov v =

Under steady-state conditions n=7°, £ =£°, A =A°, v=V°.

2. Quasisteady-State Approximation

Let us investigate the stability of the steady-state cycle in classical approximation, when a heated
layer of powder becomes tuned to perturbations in the gas. In this case, the propagation velocity of the
flame is equal to the quasisteady-state rate of combustion z, which in linear approximation is represented
in the form '

s= o[ g (=) 4 e (o — 1) + £ € =) @.1)

where the parameters v, h, and q define the degree of dependence of the rate of combustion on the pressure,
flow density of the gases, and the temperature in the chamber under steady-state conditions
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We find from Eqs.(1.4) and (1.5), taking into account relations (1.6), (1.7), and (2.1) in linear approxi-
mation,

LE) R = B, @)% B, 2.2)

Here t, =V/[A,F , (RT,°)Y/?] is the relaxation time of the chamber and a =T,/T, is the relative tem-
perature of the walls

Q) v ME—a) [Q@)
By = ‘———“cvjfz 5= 2 nng —a cb/a [ O n]
_ Q@) k<3 n”" C—a [Q(s)
B, = [ "V;Z*o - CJ —(n— 1)@ — e [ ,;VT:*O n}

The steady-state solutions of system (2.2) are stable in a small region {f, as shown in the theory of
differential equations [11], the roots of the characteristic equation of system (2.2)

aB,° 0B, 2B8,° 8By° dBy° 8By
() - =0 @-3)

T e T L o
have negative real parts. For this, it is necessary and sufficient that the coefficients of Eq. (2.3) should
satisfy the Routh~Hurwitz conditions

8B1 8Bz 3B1° 3Bs° 3B,° 0B»°

<0, -GGG >0 (2.4)

The steady-state solutions of Eq. (2.2) have the form
1=7° L={ (2-5)

Written in the form of Eq. (2.5), these solutions include all the possible steady-state combustion
cycles.

Substituting Eq. (2.5) in Eq. (2.4), we obtain the necessary condition of stability of combustion in
quasisteady-state approximation;
v mm(-g—’— Bs) (2.6)
Here
b= (=B [V (1= 5)+HEZE] - g ol (4 = B (¥ )
N =2£’2—>n, R +(—§i——_b_>(zv_n)

{*—a 2

n+1 b\ N-—n (V1) R W—1)q
AR T ES S P

B3=b+(1“b)77\tf_ 2 N 2N N

the parameter o takes into account the dependence of the heat of combustion on the pressure

_ dlnge
T dlnp

As numerical calculations show, for HES 4016 powder at pressures of p = 12 kg/cm?, the value of the
parameter o varies over wide limits: 0 <@ = 1.21 (in Fig. 1, curve 2); the maximum value of o is
reached when p ~30 kg/cm?.

We shall express the quantity h in terms of the structural parameters of the chamber and the physico-
chemical properties of the powder. In the region of positive erosion, according to the usual data [12], the
coefficient of erosion & =u°/u,° is represented by a linear interpolated dependence on the dimensionless
parameter J [13]

= (eWy §1,/2 / (9o40%)
A { 1 for JO<Jy @.7
uw® |1+ Dy(J°—Jy) for J°>J,
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=Y f ; Here £, is the drag coefficient
jx / — ’ 1y
275 = e
- / 5 osw[@wf%]
ai - ’
4 4 sl 1 is the dynamic viscosity; d;=4¥/II is the equivalent diameter (II is
a5 I 7 P, /:f/cm the perimeter of the chamber cross section free for the passage of the
7 ’ gases). In Eq. (2.7), the value of J depends on the coordinate along the
Fig. 4 charge. With more accurate data, D;=0.006, J, =6.7 when 6 < J =20
{the interpolated relation e(J) is given in [12] over a narrower range
of measurement of J).
In the conversion of Eq. (2.7) to the flow density of the gases, we obtain
{ Up® for J° < J*
u° = ° i s (G°)7/| o:} ° (2.8)
u0~+aD3{0562(ET> CF ) for 1>,
Under steady-state conditions Eq. (1.8) is achieved and therefore from Eq. (2.8) we have
s n7f8 s Y1
h= 2o oy o, ) (2.9)
8 (poe®) L (oo *
where

Dy = 0.562 (1, /dy)a

If formulas (2.7)-(2.9) are used for an averaged flow density of the gases, then in place of D, it is
necessary to take the quantity D;/2.

Figure 4 represents the graphical interpretation of the inequality (2.6) for HES 4016 powder when
T, =25°C. Inthe calculations, the thermal losses and the dependence of the rate of combustion on the tem-
perature of the gases has not been taken into account (N=n, q=0). The curve 1-1 represents the experi-
mental relation v(p) [7, 8]. Curves 2~2, 3-3, 4-4, and 5~5 depict the right-hand side of inequality (2.6) vy
as a function of pressure when w =0, 100, 175, and 250, respectively, and d; =50 cm.

The arms of the curves of v, (0,n) lying above the line p(p)correspondto stable conditions. Taking
account of the incomplete heat release gives an upper and a lower limit of combustion with respect to pres-
sure. With increase of v (for a fixed value of d,), the upper limit increases but the lower limit falls. The
calculations showed that with a reduction of the equivalent diameter, the effect of erosive combustion is
intensified. Therefore, in geometrically similar chambers the limiting pressure at which cut-off takes the
place of stable combustion is higher in small chambers than in large ones.

Special cases of inequality (2.6) were obtained previously in [3, 4].

3. Low-Frequency Instability

Now let us investigate the stability of the combustion process under nonsteady-state conditions, taking
account of the inertia of a heated layer of powder.

Using Zel'dovich's method {1, 14], we proceed from formula (1.3) to the relations

u:u(P,f,G, T2)9 T1:T1(p7f,G= T2) (3.1)

where f is the temperature gradient at the surface of the fuel. Relations (3.1) and also formula (1.1) will
be comparable also in nonsteady-state conditions.

We introduce the dimensionless quantities time, coordinate, and temperature in the fuel, and tempera-~
ture gradient at the surface, by the formulas

(w2 ou® -7 . Ti—Ty
T= m'_tv E”Tx’ e—T1*°—-—-Tu’ G = T1*°—-—T0’
o 90,v ¢

9 fs®

Here w, is the coefficient of temperature conductivity of the powder. In linear approximation

=1 +mb, =0+, A=3+Mb, v=10"+09
B— [8°+ 6, () ¥lexp (%8), O = 0° 1 Dyp, = v+ g
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where 17y, £y, Ay, vy, 04(8), ¢4, and ¢; in the module are much less than the corresponding steady-state
values; the function ¥ (7) defines the change of dimensionless variables with time.

From formulas (3.1), just as in [2-4], relations can be obtained which connect the amplitudes of the

rate of combustion, pressure, flow density, temperature in the chamber, and temperature and temperature
gradient at the surface

— 1) — pk hAir—1) —7 Ay
(hpr— 2 =Yy ko p RO Doty gl sk

n° A °
(3.2)
kE—1)— — —1)—
(tr— g =20 o T Lm0l oGl gy (33

The quantities k, r, u, j, and s define the degree of dependence of the rate of combustion and the sur-
face temperature on the initial temperature, pressure, flow density, and temperature in the chamber under
steady-state conditions

(.0 dln u°) ' _ <5T1°> =t ( Ty )
= (Iy°—To) ( T Joers |\ lper, VT T T \3lap)m.er,
1 ( aTy® LI

I = 75 T \3né )p, To, Ts' §= Ty — Ty (0 in Tz)p, Ta G

For a heated layer of powder, the thermal conductivity equation holds true

a0 a0 a0
AR 02> (3-4)

(the coordinate origin is located on the burning surface) with the conditions

0 (0, v) =0, 6 (—o0, 1) =0
In linear approximation we have, from Eq. (3.4),

d‘;@zx + v cdel _ Gy 9%, = (3.5)
6, (0) =By, exp (v £) 0, (§) >0 for £ —
Assuming that
¥ (1) = exp [(7PQT], (R = wx, / (%)),
we find the solution of Eg. (3.5)

(=] k' ﬁO
8, = <1‘)1, -+ :ZQ vl) exp(’mb) — g U1 {3.6)
where
— Yot Cla+ "

Equation (3.6) permits us to obtain one more relation between the amplitudes of the rates of combus-
tion, temperature, and temperature gradient at the surface

o1 =2 (14 m)d, + T2y, (3.7)

Considering Eqgs. (3.2),3.3), and (3.7) as a system of algebraic equations in respect of vy, ny, ¢, &4,
M, and £y, we obtain the formula for the nonsteady-state rate of combustion

h‘{"——]m

Ckv° [v‘l—" — um

v =2t e [ () + S 0 I ¢ — )] (3.8)

where
¥ =1—m/Q
Formula (3.8) is true for any real and complex frequencies. In particular, for low frequencies

(fol < @)%/ng), Eq. (3.8) assumes the form

h—])d?» (g —9)dg
t+ z° dt]

v =2z kv’ [ op)dn_Jr (3.9)
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where t, =xy/(u’)? is the relaxation time of the heated layer of powder. It can be seen that in the case of a
low-frequency nonsteady~state combustion, the flame propagation velocity at any instant differs from the
free quasisteady-state value by the sum of two quantities which are proportional to the scaled pressure,
flow density, and temperature of the gases with respect to time. The previously well-known results of
[145—16] follows from Eqs.(3.8) and (3.9) as special cases.

By repeating the stability analysis carried out above for the system of equations (1.4) and (1.5), and
taking into account relations (1.6), (1.7), and (3.9), we find the conditions for low-frequency stability of
the steady-state solution (1.4) and (1.5)

kt, (vN 4 Bg) / 15 << 1 (3.10)
YN — Be+ Kty B (v —pn+ A — 1)+ Bal /2, << 0 (3.11)
v <Py /B, (8.12)

Here

B =N (h—p— )+ O —1)lg—s— (h— )2
B, = LELmROAD <€°ia+%> (N—m)+ (1 —a)N — (N ~1)q
’ Br =laV 4+ (1 — YN — m)] [g — s — (b — /2]

In particular, for quasisteady-state approximation (t;/t, << 1), Eq. (2.6) follows from Eq. (3.11) and
(3.12). However, by taking account of the inertia of the heated layer of fuel it is necessary that inequality
(3.10) be satisfied. For this, the parameters of the combustion process, as follows fromEqs.(3.11)-(3.12)
and taking Eq. (3.10) into account, should further satisfy the condition

v < min (§;/Bs, Bs) (3.13)

where

8, — N (B — Bs) — Ba 4~ {[IV (Bs — Bs) — Ba]2 — &NV? [Ba (b — b — /) — BsBs + Bol}”
. 2N2

The physical significance of condition (3.13) is the same as in the quasisteady-state case.
For the steady-state law of combustion in the form
W =pDTNH T,

Eq. (3.10) assumes the form

#apoS RT3 AF, N <1
VD (To) H (G) [posR‘/q) (T H (6) T(21+2¢1)/2:Z (VN -+ Bs) <1,

vy =(1-+v)/[d—v) (3.14)

The investigation of the conditions obtained for stable combustion, Eqs. (2.6),(3.13), and (3.14) per-
mits a number of conclusions of a qualitative nature to be drawn:

1. The incompleteness of the course of chemical reaction worsens the stable operation of a half-
closed chamber.

2. Poesitive dynamic erosion destabilizes, and negative dynamic erosion stabilizes, the combustion
process.

3. For a given charge geometry and chamber volume, reduction of the initial temperature of the
powder promotes the appearance of unstable combustion,

4. For a given powder, in order to ensure stable combustion, it 1s necessary to reduce the ratio of
burning surface to free volume.

5. For geometrically similar half-closed chambers, instability is more probable in small-sized
chambers than in large-sized chambers.

6. Dependence of the surface temperature on the pressure and temperature in the chamber stabilizes,
but dependence on erosion destabilizes, the combustion process.

7. For a given chamber geometry, in the absence of erosion, high~calorific powders burn more
stably than low-calorific powders if the power index in the law of combustion v is greater than (1-4q)/3,
but they burn less stably in the contrary cases.
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8. Increase of heat transfer reduces the stability of the combustion process.

9. The dependence of the rate of combustion on the temperature of the gases in the chamber worsens

the stable operation of the chamber.

10.

11.

12.

13.

14.

15.

16.
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